from collections import defaultdict from pprint import pprint import os from typing import Dict, List from sqlalchemy import Table, create_engine, text, insert from dotenv import load_dotenv from dbapi.tables import metadata_obj, training, exercise, approach from obsidian.notes_parser import parse_training_data, remap_unique_exercises from apple.notes_parser import parse_training_data as apple_parse_training_data from apple.notes_parser import remap_unique_exercises as apple_remaper from obsidian.py_models import Training load_dotenv() DB_USERNAME = os.getenv("POSTGRES_USER") DB_PASS = os.getenv("POSTGRES_PASSWORD") engine = create_engine( f"postgresql+psycopg2://{DB_USERNAME}:{DB_PASS}@localhost:5433/fitness_database", echo=True, ) # NOTE: "Begin once" style - using `.begin` as context creator for SQLAlchemy # with engine.begin() as conn: # result = conn.execute(text("select 'hello world'")) # print(result.all()) # conn.execute( # text("INSERT INTO some_table(x, y) VALUES (:x, :y)"), # [{"x": 6, "y": 7}, {"x": 9, "y": 10}], # ) # NOTE: "Commit as you go" style - after managing transactions we need to call Connection.commit(). Otherwise ROLLBACK # will be executed # with engine.connect() as conn: # result = conn.execute(text("SELECT x, y FROM some_table")) # for row in result: # print(f"x: {row.x} -- y: {row.y}") # NOTE : Create all tables from metadata object # metadata_obj.create_all(engine) # TODO: Check how psycopg2 handles duplication of tables # TODO: Check how migrations are done # NOTE: Drop all Tables from database # metadata_obj.drop_all(engine) # metadata_obj.create_all(engine) # NOTE: Table reflection - generating table object from existing tables (only tables, that are stored in metadata) # some_table = Table("some_table", metadata_obj, autoload_with=engine) # print(some_table.c) # ----- # Inserting training values into database # trainings: List[Training] = parse_training_data() # for train in trainings: # if not train: # continue # else: # print("-------------------------\n" * 2) # print(train) # training_statement = insert(training).values(Date=train.date) # # Create training # with engine.connect() as conn: # result = conn.execute(training_statement) # train_pk = result.inserted_primary_key[0] # for exr in train.exercises: # approach_statements = [] # exercise_statement = insert(exercise).values( # Training=train_pk, Name=exr.name # ) # exr_insert = conn.execute(exercise_statement) # exr_pk = exr_insert.inserted_primary_key[0] # for appr in exr.approaches: # appr_statement = insert(approach).values( # Exercise=exr_pk, Weight=appr.weight, Reps=appr.reps # ) # appr_insert = conn.execute(appr_statement) # conn.commit() # ----- # Calculating unique exercises for obsidian # trainings: List[Training] = parse_training_data() # # # unique_exercise_names = defaultdict(int) # counter = 0 # # for train in trainings: # if not train: # continue # if train.exercises: # for exr in train.exercises: # counter += 1 # unique_exercise_names[exr.name] += 1 # # pprint(unique_exercise_names) # print(counter) # parsed_trainings = remap_unique_exercises(trainings) # # print("\n" * 3) # # unique_exercise_parsed_names = defaultdict(int) # p_counter = 0 # for train in parsed_trainings: # if not train: # continue # if train.exercises: # for exr in train.exercises: # p_counter += 1 # unique_exercise_parsed_names[exr.name] += 1 # pprint(unique_exercise_parsed_names) # print(p_counter) # Apple notes playground # trainings: List[Training] = apple_parse_training_data() # # # unique_exercise_names = defaultdict(int) # counter = 0 # # for train in trainings: # if not train: # continue # if train.exercises: # for exr in train.exercises: # if exr: # counter += 1 # unique_exercise_names[exr.name] += 1 # # pprint(unique_exercise_names) # print(counter) # # parsed_trainings = apple_remaper(trainings) # # print("\n" * 3) # # unique_exercise_parsed_names = defaultdict(int) # p_counter = 0 # for train in parsed_trainings: # if not train: # continue # if train.exercises: # for exr in train.exercises: # if exr: # p_counter += 1 # unique_exercise_parsed_names[exr.name] += 1 # pprint(unique_exercise_parsed_names) # print(p_counter) # Combined trainings obsidian_trainings: List[Training] = parse_training_data() obsidian_parsed_trainings = remap_unique_exercises(obsidian_trainings) apple_trainings: List[Training] = apple_parse_training_data() apple_parsed_trainings = apple_remaper(apple_trainings) combined_trainings = obsidian_trainings + apple_trainings unique_exercise_parsed_names = defaultdict(int) for train in combined_trainings: if not train: continue if train.exercises: for exr in train.exercises: if exr: unique_exercise_parsed_names[exr.name] += 1 pprint(unique_exercise_parsed_names) print(len(combined_trainings))